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The flow over a sphere of radius a is affected by the entire front 
part of the sphere. Therefore in calculating the t ime taken by the 
fluid to move along an arbitrary streamline in the layer 6 it is ne-  
cessary to integrate within the limits 0, ~r-0 (6 is the angle between 
the radius vector and the polar axis, which coincides with the direc- 
tion of motion of the unperturbed flow; the coordinate origin is lo- 
cated at the center of the sphere). 

The diffusion t ime averaged over the entire surface of the sphere 
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We will est imate the diffusion flow to a spherical droplet moving 
at Re << 1. In accordance with the Hadamard-Rybchinskii solution, 
the tangential  velocity 

v o = u q~sin 0, (9) 

where u is the velocity of the droplet; 
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From Eqs. (7)-(9) we obtain an equation for estimating the thick- 
ness of the diffusion layer: 
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integrating and keeping in mind that Nu = a/5, Pe = ua/D. we re- 
duce Eq. (10) to the form 

Nu s 
P c =  (16 In 2) ~ (1+ ~) 1 + 3~-4- 2Nu (11) 

For a bubble (p << t ,  Pe >> 1) expression (11) takes the form 

1 
0~42 lintY" Su = - - - ~  �9 (12) 

If ~ ~ ~ (solid particle) and Pe >> 1, Eq. (11) becomes 

1 
0.65 

Su---- ~ Pe ~ .  (13) 

When the viscosities are comparable (~ ~ 1), we have 
I 1 

The numerical  coefficients in (12)-(14) coincide with the exact  
values [1] if 8 is set equal to 0.91 in (12) and (14) and 1.02 in (13). 
This confirms the validity of the above est imate of B, and indicates 
that this coefficient depends only very slightly on viscosity. 

It may be assumed that the function Nu(g), determined from 
Eq. (11), does not have singularities in the interval of variation of 
viscosity 0 - V -< ~. Therefore the quantity t~ in Eq. (11) may be 
taken equal to its mean value of 0.97. When the above value of the 
coefficient ~ is employed, the diffusion flux is calculated correct to 
approximately e6qo. 

Since we have assumed the statinnarity of the concentration field, 
the method proposed is applicable for t imes t much greater than the 
t ime ~" during which as a result of diffusion to the surface of the body 
the particles are displaced through a distance equal to the thickness 
of the diffusion layer 6, i . e . ,  

6 '  
t>>~-- 

2~ 2 O 

In the stationary regime the diffnsinn t ime is equal to the convec- 
tion t ime.  The latter is equal in order of magnitude to 00u, which 
makes it possible to put the stationarity condition in the form t >> 
>> 00u, a form convenient for practical calculations. 

NOTATION 

a is the radius of droplet (sphere); C is the concentration, C o is the 
same remote from the surface; D is the diffusion coefficient; j is the dif- 
fusion flux; n = C / C  0 is the dimensional concentration; t i s t im e ;  U 
and u are the velocity of liquid and droplet, respectively; roy x is the tan-  
gential component of velocity; Vy is the normal component of velocity; 
x is the coordinate along surface of body; y is the coordinate along 
normal to surface; Nu = o05 is the Nusselt number. Pe = ua/D is the 

^ " / ' ~ -  "1/2 "S c o e f f l  Peclet number; Re is the Reynolds number; t~ = x / t~a )  1 a "- 
cient; 6 is the thickness of diffusion layer; g - y /k  is a dimensionless 
coordinate; @. 0 a repolar  angles; k is the scale in the y direction; 
Pl, Pz is t h e d y n a m i c  viscosity of liquid inside and outside droplet, 

= Pt/~2; g = t / r  is dimensionless t ime; ~" is the t ime scale. 
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It is now becoming clear that the use of ceramic materials in the 
channels of MHD generators operating on combustion products at 

2800-3000 ~ K must be extremely l imited.  The experimentally ob- 

served damage and the interaction of the plasma with the duct walls 
exclude the possibility of using uncooled systems over extended periods, 
but it is to be expected that water-cooled metal  walls will be suffi- 
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ciently stable if properly designed as box sections with thin inter- 
vening layers of insulation. 

As shown in [1], the use of thin insulators (0.1 of electrode pitch) 
is justified from the power engineering standpoint and at the same 
time makes it possible to keep the insulator temperature sufficiently 
low--not more than 1200 ~ C, a temperature at which the channel 
structure may be expected to be sufficiently stable. 

A cross section through a cooled box-electrode and insulator is 
shown in Fig. 1. In order to obtain the temperature distribution in 
the electrode metal and the insulator we simulated the stationary 
temperature field on conductive paper using an gHDA-9/60 integrator. 
In so doing we employed the analogy between the flow of current in 
a conductive medium and the process of heat propagation in the wall 
regions of an MHD du.ct with variable conduct!vity. 

The electrical conductivity of the paper o, the analog of the 
thermal conductivity )v of the simulated medium, varies discontinuously 
on passing from One part tO another, but remains constant within each 
part. 

The boundary conditions are determined on the assumption that 
the problem is periodic and that the centers of electrode and insula- 
tor are axes of symmetry. On them dT/dx = 0. 

At the outer edge of the thermal layer the gas temperature is 
given, Tg = c0nst} similarly, ori the coolant side T c = const. 

The thermal resistance of the thermal layer at the wall was si- 
mulated with an additional layer of paper whose thickness is given by 

= )?a. (1) 

Here, k is the thermal conductivity of the layer of gas or liquid, and 
a is the heat transfer coefficient, assumed constant over the entire 
surface of contact between the plasma and the electrode and insulator 
and also over the entire electrode cooling surface. 

Calculations [2] show that in the possible range of surface tem- 
perature variation (600-1200 ~ K) ag varies from 0.71 to 0.56 kW/ 
/ m  ~ �9 deg. This can be taken into account in the second approxima- 
tion by correspondingly varying the zone width b (Fig. 1). 

The assumption that a is constant simplifies the problem and 
makes it possible to draw the necessary qualitative conclusions. 
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Fig. 1. Diagram of model (at outer edge of therma! layer 
= 1.0= c0nst, T 2= 2800~ on thecoulant  side ~ =  0 = 

= const, Tc = 323 ~ K): 1) metal electrode, 2) insulator, 
3) layer of gas, 4) layer of liquid. 

The error introduced by the condition a c = const l~es within the 
Iimits of accuracy of the construction of the model. 

Using the physical similarity condition o = nk and expression (1), 

we write the scale relation in the form 

~i /k i  - -  ~alc{~:b = "s41~c:d. (2) 

Calculations [2] give: Tg = ~800 ~ K, Tg w = 600" K, Og = 22 kg/ 
/see, G c = 0.84 l / s e c ,  ag = 0.71 kW/m �9 dog. This corresponds to 
the most heayily loaded inlet section of the duct. 
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Fig. 2. Distribution of temperature T, ~ at 
surface of electrode and insulator. 

It was assumed that }'el = 23,q W/m �9 deg, kinsu 1 = 1.85 W/m- 
�9 deg. A model of the channel wall was formed Of conductive paper 
of different conductivity in accordance with condition (2). 

q'be temperature distribution obtained (Fig. 2) indicates that the 
corners of the cooled electrodes are zones of high temperature (up 

to 1100 ~ K) relative to the center of the electrode. 
This should be taken into account in examining possible mecha- 

nisms of current flow through cooled electrodes and the relationship 
between current and electrode temperature. 

The above eMculations did not allow for the fact that in the Hall- 
effect generator considered there is a nonuniform current density dis- 
tribution near the electrodes and corresponding Joule losses (the term 
jx/o in the energy equation) in the boundary layer. 

Clearly, the temperature at the corners of the electrode will be 
even higher, since the current density in that zone is especially high. 

Disregarding this secondary effect, we may conclude that the tem- 
perature of the thin insulator lies within permissible limits (up to 
1400 ~ K at the surface), so that there is a good chance of its giving 
extended service in the channel. 

NOTATION 

j is the electric current density; o is the electrical conductivity of 
the paper; T is the absolute temperature; X. is the thermal conductivity 
of the medium; 6 is the thickness of the simulated layer; n is the scale 
factor; ag is the coefficient of heat transfer from the gas to the wall; 
a e is the coefficient of  heat transfer from the wall to the coolant; Tg 
is the stagnation temperature of the gas flow; Tg w is the gas tempera- 
ture at the wall; Gg is the flow rate of the combustion products; G c is 

the flow rate of the coolant. 
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